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Test sets of the knapsack problem andsimultaneous diophantine approximationMartin Henk� Robert WeismantelyAbstractThis paper deals with the study of test sets of the knapsack problemand simultaneous diophantine approximation. The Graver test set of theknapsack problem can be derived from minimal integral solutions of lin-ear diophantine equations. We present best possible inequalities that mustbe satis�ed by all minimal integral solutions of a linear diophantine equa-tion and prove that for the corresponding cone the integer analogue ofCaratheodory's theorem applies when the numbers are divisible.We show that the elements of the minimal Hilbert basis of the dualcone of all minimal integral solutions of a linear diophantine equationyield best approximations of a rational vector \from above". A recursivealgorithm for computing this Hilbert basis is discussed. We also outline analgorithm for determining a Hilbert basis of a family of cones associatedwith the knapsack problem.Keywords: knapsack problem, simultaneous diophantine approximation,diophantine equation, Hilbert basis, test sets.1 IntroductionThis paper deals with the study of test sets of the knapsack problem and simul-taneous diophantine approximation. Both topics play a role in various branchesof mathematics such as number theory, geometry of numbers and integer pro-gramming.From the viewpoint of integer programming, minimal integral solutions of alinear diophantine equation allow to devise an exact primal algorithm for solvingknapsack problems in non-negative integer variables,max cTx : �Tx = �; x 2 Nn; (1.1)where c 2 Zn, � 2 (N n f0g)n and � 2 N. More precisely, the primal methodsthat we consider here are augmentation algorithms, and the question we addressis to describe the set of all possible augmentation vectors. This leads us to testsets.�Supported by a \Leibniz Preis" of the German Science Foundation (DFG) awarded to M.Gr�otschel.ySupported by a \Gerhard-Hess-Forschungsf�orderpreis" of the German Science Foundation(DFG). 1



A test set is a collection of all augmenting directions that one needs in orderto guarantee that every non-optimal feasible point of a linear integer programcan be improved by one member in the test set. There are various possibleways of de�ning test sets depending on the view that one takes: the Graver testset is naturally derived from a study of the integral vectors in cones [G75]; theneighbors of the origin are strongly connected to the study of lattice point freeconvex bodies [S86]; the so-called reduced Gr�obner basis of an integer program isobtained from generators of polynomial ideals that is a classical �eld of algebra,[CT91]. We refrain within this paper from introducing all these three kinds oftest sets, but concentrate on the Graver test set, only. In order to introduce theGraver test set for the family of knapsack problems with varying c 2 Zn andb 2 N, the notion of a rational polyhedral cone and its Hilbert basis is needed.De�nition 1.1. For z1; : : : ; zm 2Zn, the setC := pos fz1; : : : ; zmg = ( mXi=1 �izi : � 2 Rm�0)is called a rational polyhedral cone. It is called pointed if there exists a hyper-plane fx 2 Rn : aTx = 0g such that f0g = fx 2 C : aTx � 0g.De�nition 1.2. Let C � Rn be a rational polyhedral cone. A �nite subsetH = fh1; : : : ; htg � C \Zn is a Hilbert basis of C if every z 2 C \Zn has arepresentation of the form z = tXi=1 �ihi;with non-negative integral multipliers �1; : : : ; �t.The name Hilbert basis was introduced by Giles and Pulleyblank [GP79] inthe context of totally dual integral systems. Essential is (see [G1873], [C31])Theorem 1.1. Every rational polyhedral cone has a Hilbert basis. If it ispointed, then there exists a unique Hilbert basis that is minimal w.r.t. inclu-sion.In the following by a cone we always mean a rational polyhedral cone.Let Oj denote the j-th orthant in Rn. For A 2 Zm�n, the set Cj := fx 2Oj : Ax = 0g is a pointed cone in Rn. Denoting by Hj the minimal Hilbertbasis of Cj, Graver proved the following: The set H := SjHj is a test set forthe family of integer programs of the form maxcTx : Ax = b; x 2 Nn for a�xed matrix A 2Zm�n and varying c 2Zn and b 2Zm.This result is the starting point for our discussions. Namely, in order todevise an exact primal algorithm for solving a knapsack problem of the form(1.1), we need to determine, for every orthant Oj in Rn, a Hilbert basis Hj ofthe so-called knapsack cone Cj = fx 2 Oj : �Tx = 0g.We present in this paper best possible inequalities that must be satis�ed byall the elements of the minimalHilbert basis ofCj and prove that forCj the inte-ger analogue of Caratheodory's theorem applies when the numbers f�1; : : : ; �ngare pairwise divisible. We also show that the elements of the minimal Hilbertbasis of the dual of Cj yield best approximations of a rational vector \fromabove". A recursive algorithm for computing this Hilbert basis is discussed. Asimilar type of procedure applies to the cone Cj. Therefore this method canalso be used to �nd a test set of the knapsack problem.2



2 The knapsack coneUp to a permutation of the coordinates, a knapsack cone Cj can be identi�edwith the set Kn;m of all non-negative solutions of a linear diophantine equation,i.e., Kn;m = 8<:(x; y)T 2 Rn�0�Rm�0 : nXi=1 aixi = mXj=1 bjyj9=; ;where we always assume that a = (a1; : : : ; an)T 2 Nn, b = (b1; : : : ; bm)T 2 Nm,n � m � 1 and a1 � a2 � � � � � an, b1 � b2 � � � � � bm. It is easy to see thatKn;m = pos �bjei + aien+j : 1 � i � n; 1 � j � m	 ; (2.1)where ei 2 Rn+m denotes the i-th unit vector. The minimal Hilbert basis ofKn;m is denoted by Hn;m.One of the major results of this paper is to show that every element inHn;m satis�es n + m special inequalities that generalize the two inequalitiesPni=1 xi � bm andPmj=1 yj � an proved by Lambert ([L87]) and independentlyby Diaconis, Graham & Sturmfels [DGS94].Theorem 2.1. Every (x; y)T 2 Hn;m satis�es the inequalities[jl] : nXi=1 xi + l�1Xj=1� bl � bjan � yj � bl + mXj=l+1�bj � bla1 � yj ; l = 1; : : : ;m;[ik] : mXj=1 yj + k�1Xi=1 �ak � aibm � xi � ak + nXi=k+1�ai � akb1 �xi; k = 1; : : : ; n:From an algorithmic point of view Theorem 2.1 allows to assert that anintegral point in Kn;m does not belong to a minimal Hilbert basis of this cone.This problem is in general NP-complete, see Seb�o [S90].Theorem 2.2 (The Decomposition Problem). For the pointed cone Kn;m,and a vector (x; y)T 2 Kn;m \Zn+m it is co-NP-complete to decide whether(x; y)T is contained in Hn;m.Theorem 2.2 asserts the di�culty of testing for non-membership in Hn;m.On the other hand, every integral vector in this cone can be decomposed byvectors of the basis. In fact we can write every integral vector in any pointedcone of dimension n as the non-negative integer combination of at most 2n� 2vectors from the basis. This was shown by Seb�o [S90] and gives currently thebest bound in general; it improves the bound given by Cook, Fonlupt & Schrijver[CFS86] by 1, yet is still quite far from what many researchers conjecture to betrue, namely: every integral vector in a pointed cone is the non-negative integercombination of at most n vectors of the Hilbert basis. We now prove that thisinteger Version of Caratheodory's Theorem holds for the knapsack cone whenthe numbers are divisible.Theorem 2.3. Let positive integers a1; : : : ; an and b1; : : : ; bm be given suchthat there exist pi; qj 2 N withai = pi � ai�1; i = 2; : : : ; n; b1 = q1 � an; bj = qj � bj�1; j = 2; : : : ;m:3



Every integral point in Kn;m can be written as the non-negative integer combi-nation of at most n+m� 1 = dim(Kn;m) elements of Hn;m.Let us point out that, although Theorem 2.1 gives the best inequalitiesknown so far to assert that an integral point in Kn;m does not belong to theminimal Hilbert basis, we believe that a much stronger and more general state-ment is true: every element in the minimal Hilbert basis of Kn;m is a convexcombination of 0 and the generators bjei + aien+j of Kn;m. More formally, letPn;m = conv�0; bjei + aien+j : 1 � i � n; 1 � j � m	 :One might conjecture thatConjecture 2.1. Hn;m � Pn;m.1For m = 1 Theorem 2.1 implies the inclusion Hn;1 � Pn;1. This can easilybe read o� from the representationPn;1 = ((x; y)T 2 Rn�R : aTx = b1y;x; y � 0; nXi=1 xi � b1) :One way of verifying the correctness of the conjecture could be to �nd allfacets de�ning inequalities of Pn;m and to check that these inequalities are sat-is�ed by the elements of Hn;m. A subset of the facets de�ning inequalities isgiven byProposition 2.1. For l = 1; : : : ;m letJl = 8<:(x; y) 2 Rn�Rm : nXi=1 xi + l�1Xj=1 bl � bjan yj � bl + mXj=l+1 bj � bla1 yj9=;and for k = 1; : : : ; n letIk = 8<:(x; y) 2 Rn�Rm : mXj=1 yj + k�1Xi=1 ak � aibm xi � ak + nXi=k+1 ai � akb1 xi9=; :Pn;m � Jl, Pn;m � Ik. Moreover, the inequalities de�ning the halfspaces Jl andIk de�ne facets of Pn;m, 1 � l � m, 1 � k � n.Remark 2.4. Since Pn;2 = f(x; y)T 2 Rn�R2 : aTx = bTy;x; y � 0; (x; y)T 2Ik; 1 � k � ng, Theorem 2.1 shows that the conjecture is \almost true" whenm = 2.3 Best approximations \from above"In this section we deal with a cone that on the �rst view seems to be not relatedto the knapsack cone investigated before.1This conjecturewas independentlymade by Hosten and Sturmfels, private communication4



Let e1; : : : ; en denote the n unit vectors in Rn+1 having a 1 in coordi-nate 1; : : : ; n, respectively. For p 2 Zn+1 such that gcd(p1; : : : ; pn+1) = 1,p1; : : : ; pk > 0, pk+1; : : : ; pn < 0 and pn+1 > 0, letC(p) = pos fe1; : : : ; en; pg: (3.1)It turns out that the dual cone C(p)� of C(p) is \essentially" the knapsackcone. This result builds the bridge towards the previous section. By de�nition,C(p)� can be written as C(p)� = fv 2 Rn+1 : vTx � 0; 8 x 2 C(p)g. Sincethe generators of C(p) consist of the unit vectors e1; : : : ; en plus the vectorp 2Zn+1, we obtainC(p)� = (v 2 Rn�0�R : kXi=1 vi � pi � nXi=k+1 vi � (�pi) � vn+1pn+1) :Depending on the sign of vn+1, we partition C(p)� into the following two conesC(p)�� = (v 2 Rn+1�0 : kXi=1 vipi + vn+1pn+1 � nXi=k+1 vi � (�pi)) ;C(p)�� = (v 2 Rn�0�R�0 : kXi=1 vipi � nXi=k+1 vi � (�pi) + (�vn+1)pn+1) :Both cones, C(p)�� and C(p)�� may be regarded as \�-knapsack cones", or,the facet of the cone C(p)�� (C(p)��) induced by the non-trivial inequality is aknapsack cone of the form Kk+1;n�k (Kk;n�k+1) that we studied in Section 2.In the remainder of this section we study the minimal Hilbert basis of C(p).It turns out that this basis is closely related to the problem of simultaneousdiophantine approximation of rational numbers by other rational numbers withan upper bound on the denominator. More precisely, we consider the followingapproximation problem:Simultaneous Diophantine Approximation \from above":Let p1; : : : ; pn+1 2Z, pn+1 > 0, and N 2Z, N > 0.Find integers q1; : : : ; qn+1, N � qn+1 > 0 such that qi=qn+1 � pi=pn+1, i =1; : : : ; n, and Pni=1( qiqn+1 � pipn+1 ) is as small as possible.The vector q0 = ( q1qn+1 ; : : : ; qnqn+1 ) is called a best approximation of p0 = ( p1pn+1 ;: : : ; pnpn+1 ) from above with respect to N .It is clear that if N � pn+1, then p0 = ( p1pn+1 ; : : : ; pnpn+1 ) itself is its best ap-proximation from above. It is, however, not clear how one can characterize abest approximation of p0 from above when N < pn+1. We show that a bestapproximation of p0 from above can be read o� from the minimal Hilbert basisof C(p).Theorem 3.1. Let p1; : : : ; pn+1 2 Z, pn+1 > 0, and N 2 Z, N > 0. Thereexists an element (q1; : : : ; qn+1) of the minimal Hilbert basis of C(p) such thatq0 = ( q1qn+1 ; : : : ; qnqn+1 ) is a best approximation of p0 = ( p1pn+1 ; : : : ; pnpn+1 ) fromabove with respect to N . Moreover, among all such best approximations of p0,q0 is the unique one with smallest denominator qn+1.5



Instead of restricting our attention to approximations of a rational vector p0from above, one could ask for approximations where, for any of the componentsof p0, one would specify a-priori, whether the approximation should lie belowor above the corresponding value of p0. Theorem 3.1 can be extended to thissituation.Theorem 3.2. Let � 2 f�1;+1gn be the sign pattern associated with one or-thant of Rn. Let p1; : : : ; pn+1 2Z, pn+1 > 0, and N 2Z, N > 0. There existsan element (q1; : : : ; qn+1) of the minimal Hilbert basis of pos f�1e1; : : : ; �nen; pgsuch thatnXi=1 ���� qiqn+1 � pipn+1 ���� =min( nXi=1 ���� xixn+1 � pipn+1 ���� : x1; : : : ; xn+1 2Z;N � xn+1 > 0; �i� xixn+1 � pipn+1� � 0):Among all solutions of this diophantine approximation problem, ( q1qn+1 ; : : : ; qnqn+1 )is the unique one with smallest denominator.4 A recursive algorithm for the Hilbert basis ofC(p) and the knapsack coneWe have motivated in the previous sections why the Hilbert basis of the knapsackcone and the cone of best approximations from above is of particular interest. Inthis section we treat algorithmic questions related to these bases. We �rst dealwith the cone C(p) = pos fe1; : : : ; en; pg � Rn+1 related to the best approxima-tions from above. Applying a unimodular transformation we may assume thatp = (p1; : : : ; pn+1) 2 Nn+1.We remark that it is trivial to �nd a Hilbert basis of C(p), because it is wellknown that fe1; : : : ; en; pg [ fz 2 Zn+1 : z = Pni=1 �iei + �n+1p; 0 � �i < 1gactually is a Hilbert basis of C(p) (cf. [C31]). All we are left with is to enumeratethese integral points. However, in general, the size of this Hilbert basis isexponentially larger than the size of the minimal Hilbert basis, and, of course,we are interested in computing a \small" one.We proceed in an inductive fashion to compute the basis of C(p): Let H2be the minimal Hilbert basis of the 2-dimensional coneC2 := pos fe1; (pn; pn+1)Tg:It is clear that e1 2 H2. Let (w1; h1) < : : : < (wm; hm) 2 H2 n fe1g be theremaining elements inH2. It follows that, for every x 2 C(p)\Zn+1with xn+1 >0, the coordinate xn+1 has a representation of the form xn+1 =Pmv=1 �vhv with�1; : : : ; �m 2 N.De�nition 4.1. For i; j 2 f1; : : : ;m� 1g, i < j, letCi;j := (x 2 C(p) \Zn+1 : 9 �i; : : : ; �j 2 N; 0 < xn+1 = jXv=i �vhv < hj+1) :We say that fg1; : : : ; gtg � L are generators of a set L �Zn if, for every x 2 L,there exist �1; : : : ; �t 2 N such that x =Ptv=1 �vgv.6



Noting that hm = pn+1, the following statement is immediate.Lemma 4.2. The union of fe1; : : : ; en; pg and a set of generators of C1;m�1de�nes a Hilbert basis of C(p).In fact, an inclusionwise ordering of all the subsets Ci;j is possible.Lemma 4.3. For every i0 � i � j � j0 2 f1; : : : ;m � 1g, a minimal set ofgenerators of Ci;j (w.r.t. inclusion) de�nes a subset of any set of generators ofCi0;j0.On account of Lemma 4.2 it su�ces to �nd generators of C1;m�1 in orderto determine a Hilbert basis of C(p). A set of generators of C1;m�1 can becomputed in a recursive manner.Algorithm 4.4. Recursion formula to �nd the generators of C1;m�1.(1) For i = 1; : : : ;m� 1 determine generators of Ci;i.(2) For i = m � 2; : : : ; 1 determine generators of Ci;m�1.The reason why this recursion makes sense is that the task of �nding a setof generators of Ci;i can be solved with a procedure to determine the Hilbertbasis of a cone similar to C(p), but in one dimension less. Secondly, if one has,for i = m � 2; : : : ; 1 as input a set of generators of Ci;i and Ci+1;m�1, thenone can devise a procedure that returns generators of Ci;m�1. This is the ideabehind the recursion.Lemma 4.5. Let ~p = (p1; : : : ; pn�1; hipn+1) 2 Nn and let e1; : : : ; en�1 de-note the �rst n � 1 unit vectors of Rn. For i 2 f1; : : : ;m � 1g, let Hi be aHilbert basis of the n-dimensional cone C(~p) = pos fe1; : : : ; en�1; ~pg: The setf(x1; : : : ; xn�1; zwi; zhi) : (x1; : : : ; xn�1; z) 2 Hi; 0 < zhi < hi+1g is a set ofgenerators of Ci;i.Lemma 4.5 shows that a set of generators of Ci;i can easily be reconstructedfrom a Hilbert basis of the cone C(~p). This is where the inductive step comesinto play. In order to solve Step (2) of Algorithm 4.4 one must be able to turn aset of generators of Ci;i and Ci+1;m�1 into a set of generators of Ci;m�1. Thistask may again be solved with a recursive algorithm that would read as follows.Algorithm 4.6. (Recursion to �nd Ci;m�1)Input: An ordered set fg1; : : : ; gtg of generators of Ci+1;m�1 with g1n+1 <: : : < gtn+1; a set of generators of Ci;i.Output: A set of generators of Ci;m�1;For every v 2 f1; : : : ; tg determine a set of generators of the set Gv :=fy 2 Ci;m�1 : yn+1 < gvn+1g.Lemma 4.7. G1 = Ci;i and Gt+1 = Ci;m�1.Lemma 4.7 shows that when we enter the for-loop of Algorithm 4.6, a set ofgenerators of Ci;i is also a set of generators of G1. Then we proceed through allvalues of v and determine a set of generators of Gv using a set of generators ofGv�1. When v equals t+ 1, we terminate with a set of generators of Gt+1 thatcorresponds to a set of generators of Ci;m�1.7



The key of Algorithm 4.6 is a subroutine for returning a set of generators ofGv+1 whose input consists of a set of generators of Gv. It is not di�cult to seethat Gv+1 is equal to the setS = fx 2 Ci;m�1 : 9 � 2 f0; : : : ; �vg; y 2 Gv s.t.xn+1 = �gvn+1 + yn+1 < gv+1n+1g; (4.1)where �v := maxf� 2 N : �gvn+1 < gv+1n+1g and gt+1n+1 := hm. The generators ofGv+1 are points of the form(x1; : : : ; xn+1) 2 S : xi = dpixn+1pn+1 e; i = 1; : : : ; n: (4.2)To each point x of the form (4.2) there corresponds a n-dimensional vector ofresidua of components xipn+1�xn+1pi, i = 1; : : : ; n. In fact, one can show thatthe minimal set of generators of Gv+1 can be characterized as follows: we orderthe integral points of the form (4.2) w.r.t. increasing last coordinate; the vectorof residua of a point that appears later in this sequence is incomparable with thevectors of residua of all points that occur earlier in this sequence. Resorting toappropriate data structures that contain information about the vector of residuafor every element in Gv one can determine a set of generators of Gv+1 withouttesting every integral point in S.For precisely this reason, Algorithm 4.4 yields a much more sophisticatedalgorithm for determining the Hilbert basis of C(p) than the trivial methoddiscussed at the beginning of the section.We now illustrate the essential steps of Algorithm 4.4 on an example.Example. Let n = 2 and p = (30; 29; 17). The elements of the Hilbert basisof C(p) = pos fe1; e2; pg that we are interested in consists of integral points ofthe form (x1; x2; x3) 2 N3 with x3 � pn+1 = 17 and xi = dpix3p3 e for i = 1; 2.To each such point x there corresponds the 2-dimensional vector of residua(x1p3 � x3p1; x2p3 � x3p2). Table 4 includes this information.By (w1; h1); : : : ; (wm; hm) we denote all elements in the Hilbert basis of the2-dimensional subcone C2 := fe1; (29; 17)Tg, except for e1. In our example wehave that m = 4 and (w1; h1) = (2; 1) , (w2; h2) = (7; 4), (w3; h3) = (12; 7) and(w4; h4) = (29; 17).Following Algorithm 4.4 we execute Step (1) to �nd generators of the setsC1;1; C2;2; C3;3. Lemma 4.5 implies that a generator of C1;1 is the element(2; 2; 1). Accordingly, we see that a generator of C2;2 is the element (8; 7; 4) andthat the vectors (13; 12; 7) and (25; 24; 14) de�ne generators of C3;3.With this information we can start Step (2) of Algorithm 4.4. There we �rstdetermine generators of C2;3 = fx 2 C \Z3 : 9 �2; �3 2 N with p3 > xn+1 =4�2+7�3g: The generators of this set coincide with the union of the generatorsof C2;2 and C3;3. It remains to �nd the generators of C1;3. To �nd these, weinspect the generators of C2;3 in the following order: �rst g1 = (8; 7; 4), theng2 = (13; 12; 7) and �nally g3 = (23; 23; 13).For every such element we determine the maximal natural number �v suchthat �vgv3 < gv+13 . The corresponding numbers in this case are �1 = �2 = �3 =1. For g1 = (8; 7; 4), we determine the minimal natural number � such thatthe residuum of the vector g1 + �(2; 2; 1) exceeds the value of p3 = 17 in one8



x3 vector residuum x3 vector residuum1 (2,2,1) (4; 5) 2 (4; 4; 2) (8; 10)3 (6; 6; 3) (12; 15) 4 (8,7,4) (16; 3)5 (9,9,5) (3; 8) 6 (11; 11; 6) (7; 13)7 (13,12,7) (11; 1) 8 (15; 14; 8) (15; 6)9 (16,16,9) (2; 11) 10 (18; 18; 10) (6; 16)11 (20,19,11) (10; 4) 12 (22; 21; 12) (14; 9)13 (23,23,13) (1; 14) 14 (25,24,14) (5; 2)15 (27; 26; 15) (9; 7) 16 (29; 28; 16) (13; 12)17 (30,29,17) (0; 0)Table 4All vectors that are written in bold together with the unit vectors e1; e2 de�ne theminimal Hilbert basis of C(p).component. This gives � = 1, and the corresponding vector is (9; 9; 5) that weadd to the generators of C1;3. For all the other vectors whose 3rd. coordinateis of the form g13+� < g23, the associated vectors of residua are greater than theresiduum of the point (9; 9; 5).Next we proceed to g2. We know from the previous iteration the generatorsof G2 := fy 2 C1;3 : y3 < g23 = 7g. This was the set f(2; 2; 1); (8; 7;4); (9; 9;5)g.On account of (4.1), G3 is of the form G3 = fx 2 C1;3 : 9 � 2 f0; : : : ; �2 = 1gand y 2 G such that x3 = �g23 + y3 < g33g. In order to �nd generators of G3 wehave to examine the vector of residua of the points x 2 G3. There are preciselytwo additional vectors for which the vector of residua is incomparable with everyvector of residua of the generators of G2: (16; 16; 9) and (20; 19; 11). A set ofgenerators of G3 isf(2; 2; 1); (8; 7; 4); (9;9; 5); (13;12;7); (16;16;9); (20; 19; 11)g:Next we proceed to g3. Because �3 = 1 we need to �nd the set of all pointsx 2 G4 = fx 2 C1;3 : 9 � 2 f0; 1g and y 2 G3 such that x3 = �g33+y3 < 17g andthe vector of residua is incomparablewith every vector of residua associated withthe generators of G3. This yields the vector (25; 24; 14). On account of lemma4.7, the sets C1;3 and G4 coincide. The generating set of C1;3 consists of thefollowing vectors: (2; 2; 1), (8; 7; 4), (9; 9; 5), (13; 12; 7), (16; 16; 9), (20; 19; 11),(23; 23; 13), (25; 24; 14). These vectors plus the vectors e1; e2 and p de�ne aHilbert basis of C(p) in this example.We want to remark that when p 2 Nn+1, then C(p)� partitions into the twocones Rn+1�0 and a �-knapsack cone of the form (cf. Section 2)C(p)�� = (x 2 Rn+1�0 : nXi=1 pixi � pn+1xn+1) :There is a similar recursive way of computing a \small" Hilbert basis of C(p)��.Let H2 be the minimal Hilbert basis of the 2-dimensional cone C2 := f(y; z) 29
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