Konrad-Zuse-Zentrum fir Informationstechnik Berlin ——
TakustraRe 7, D-14195 Berlin —

Test sets of
the knapsack problem
and
simultaneous diophantine
approximation

Martin Henk and Robert Weismantel

Preprint SC97-13 (March 1997)



Test sets of the knapsack problem and
simultaneous diophantine approximation

Martin Henk* Robert Weismantelt

Abstract

This paper deals with the study of test sets of the knapsack problem
and simultaneous diophantine approximation. The Graver test set of the
knapsack problem can be derived from minimal integral solutions of lin-
ear diophantine equations. We present best possible inequalities that must
be satisfied by all minimal integral solutions of a linear diophantine equa-
tion and prove that for the corresponding cone the integer analogue of
Caratheodory’s theorem applies when the numbers are divisible.

We show that the elements of the minimal Hilbert basis of the dual
cone of all minimal integral solutions of a linear diophantine equation
vield best approximations of a rational vector “from above”. A recursive
algorithm for computing this Hilbert basis is discussed. We also outline an
algorithm for determining a Hilbert basis of a family of cones associated
with the knapsack problem.

Keywords: knapsack problem, simultaneous diophantine approximation,
diophantine equation, Hilbert basis, test sets.

1 Introduction

This paper deals with the study of test sets of the knapsack problem and simul-
taneous diophantine approximation. Both topics play a role in various branches
of mathematics such as number theory, geometry of numbers and integer pro-
gramming.

From the viewpoint of integer programming, minimal integral solutions of a
linear diophantine equation allow to devise an exact primal algorithm for solving
knapsack problems in non-negative integer variables,

maxe z: o x=p, xeN", (1.1)

where ¢ € 77, o € (N\ {0})” and 8 € N. More precisely, the primal methods
that we consider here are augmentation algorithms, and the question we address
is to describe the set of all possible augmentation vectors. This leads us to test
sets.
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A test sef is a collection of all augmenting directions that one needs in order
to guarantee that every non-optimal feasible point of a linear integer program
can be improved by one member in the test set. There are various possible
ways of defining test sets depending on the view that one takes: the Graver test
set is naturally derived from a study of the integral vectors in cones [GT5]; the
neighbors of the origin are strongly connected to the study of lattice point free
convex bhodies [S86]; the so-called reduced Grébner basis of an integer program is
obtained from generators of polynomial ideals that is a classical field of algebra,
[CTIT1]. We refrain within this paper from introducing all these three kinds of
test sets, but concentrate on the Graver test set, only. In order to introduce the
Graver test set for the family of knapsack problems with varying ¢ € 77 and
b € N, the notion of a rational polyhedral cone and its Hilbert basis 18 needed.

Definition 1.1. For z', ... 2™ € 7", the set
C=pos{z',. . . 2"} = {Z/\7z7 A€ TRZ’O}
i=1

18 called a rational polyhedral cone. It is called pointed if there erists a hyper-
plane {z € R™ :a”x = 0} such that {0} ={x € C: a"x <0}.

Definition 1.2. Let ¢ C R"™ be a rational polyhedral cone. A finite subset
H=A{hr",... k'Y C CN7Z" is a Hilbert basis of C if every z € C'N7" has a

representation of the form
¢
= Ah

i=1

with non-negative integral multipliers Xv, ... | As.

The name Hilbert, basis was introduced by Giles and Pulleyblank [GPT79] in
the context of totally dual integral systems. Essential is (see [G1873], [C31])

Theorem 1.1. Fuvery rational polyhedral cone has a Hilbert basis. If it is
pointed, then there erists a unique Hilbert basis that is minimal w.r.t. inclu-
st0n.

In the following by a cone we always mean a rational polyhedral cone.

Let O; denote the j-th orthant in R”. For A € 7Z7*" the set C; := {» €
0; : Az = 0} is a pointed cone in R”. Denoting by H; the minimal Hilbert
basis of (;, Graver proved the following: The set H := Uj H; is a test set for
the family of integer programs of the form maxc¢’z : Az = b, z € N” for a
fixed matrix A € Z™*" and varying ¢ € 7" and b € 7.7.

This result 1s the starting point for our discussions. Namely, in order to
devise an exact primal algorithm for solving a knapsack problem of the form
(1.1), we need to determine, for every orthant O; in R”, a Hilbert basis H; of
the so-called knapsack cone C; = {x € O; : o2z =0}.

We present in this paper best possible inequalities that must be satisfied by
all the elements of the minimal Hilbert basis of (; and prove that for (; the inte-
ger analogue of Caratheodory’s theorem applies when the numbers {a1, ..., a,}
are pairwise divisible. We also show that the elements of the minimal Hilbert
basis of the dual of (U; yield best approximations of a rational vector “from
above”. A recursive algorithm for computing this Hilbert basis is discussed. A
similar type of procedure applies to the cone ;. Therefore this method can
also be used to find a test set of the knapsack problem.



2 The knapsack cone

Up to a permutation of the coordinates, a knapsack cone (U; can be identified
with the set K, ,, of all non-negative QO]]]“OHQ of a linear dlophantme equation,
ie.,

[Xrnym = (.7,‘7 y)T & Rgo X R;O : 2(177‘7 = Zbﬂ/? s
i=1 =1
where we always assume that a = (ay,...,a,)" € N" b= (by,... by,)" € N™,
n>m>1and a1 <ay <---<ay,, by <by <---<lb,. It s easy to see that
f\nmfpoe{be—kne 1<7<n1<7<m} (2.1)

where e/ € R™™ denotes the i-th unit vector. The minimal Hilbert basis of
Kp.m is denoted by H,, .

One of the major results of this paper is to show that every element in
Hn,m satisfies n + m special inequalities that generalize the two inequalities
27_1 x; < by, and Z —, y; < ay proved by Lambert ([T.87]) and independently
by Diaconis, Graham &' Sturmfels [DGS94].

Theorem 2.1. Fvery (z,y)" € Hnm satisfies the inequalities

i) - ZTA—Z{ Ju,<b,+ Z [ w yi, =1, m,

i=1 7=1 j=I+1

: Z%—FZ{ JT7<nk+Z’V

=1 i=1 i=k+1

-‘mi, k=1,....n.

From an algorithmic point of view Theorem 2.1 allows to assert that an
integral point in K, ,, does not belong to a minimal Hilbert basis of this cone.
This problem is in general A"P-complete, see Sebo [S90].

Theorem 2.2 (The Decomposition Problem). For the pointed cone K, ,,,
and a vector (m,y)T € KpmnN 70 gt 4s co-NP-complete to decide whether
(x,9)" is contained in Ho -

Theorem 2.2 asserts the difficulty of testing for non-membership in H,, ,,.
On the other hand, every integral vector in this cone can be decomposed by
vectors of the basis. In fact we can write every integral vector in any pointed
cone of dimension n as the non-negative integer combination of at most 2n — 2
vectors from the basis. This was shown by Sebo [S90] and gives currently the
best bound in general; it improves the bound given by Cook, Fonlupt & Schrijver
[CFS86] by 1, yet is still quite far from what many researchers conjecture to be
true, namely: every integral vector in a pointed cone is the non-negative integer
combination of at most n vectors of the Hilbert basis. We now prove that this
winteger Version of Caratheodory’s Theorem holds for the knapsack cone when
the numbers are divisible.

Theorem 2.3. et positive integers ay, ..., a, and by, ... by be given such
that there exist p;, q; € N with

ai:pi'ai7177j:27"'7n7 b1 = g1 - Up, })7:(]7})7,]77:2777’”



Fvery integral point in K, ,, can be written as the non-negative integer combi-
nation of at most n +m — 1 = dim(K, ) elements of "y, m.

Let us point out that, although Theorem 2.1 gives the best inequalities
known so far to assert that an integral point in K, ,,, does not belong to the
minimal Hilbert basis, we believe that a much stronger and more general state-
ment is true: every element in the minimal Hilbert basis of K, ,, is a convex
combination of () and the generators bjei + a;e™ti of Ky m. More formally, let

Py m = conv {O,i)jei +ae™ti <i<n,1<j< m} .
One might conjecture that

Conjecture 2.1. 1, ,, C anmﬂ

For m = 1 Theorem 2.1 implies the inclusion H,, 1 C P, ;. This can easily
be read off from the representation

Ppi= {(T,U)T ER" xR v =byy;z,y>0, Zn <b1}.

i=1

One way of verifying the correctness of the conjecture could be to find all
facets defining inequalities of P, ,,, and to check that these inequalities are sat-
isfied by the elements of H, ,,. A subset of the facets defining inequalities is

given by

Proposition 2.1. Forl=1,...,m let
=< (= U)ER”XRm'ir»_FEblibjy. < b+ Zm: b —bi
J1 Z, 1 : X o, ISV p Yj

i=1 =1 G=l+1

and fork=1,... n let

m k—1 n
ap — a; a; — ag
Ie =< (2,y) eER? x R™: E v + E ul 2 < ap+ E i

b b
i =1 m ikt !

Poom C Ji, Py C Iy. Moreover, the inequalities defining the halfspaces .J; and
Iy, define facets of P, 1 <I<m, 1 <k<n.

Remark 2.4. Since P, o= {(z,y)" e R"xR?:a"2 =b"y; 2,y >0, (v,y)" €
I, 1 < k <mn}, Theorem 2.1 shows that the conjecture is “almost true” when
m=2.

3 Best approximations “from above”

In this section we deal with a cone that on the first view seems to be not related
to the knapsack cone investigated before.

"This conjecture was independently made by Hosten and Sturmfels, private communication



Let ¢!, ... e” denote the n unit vectors in BR”*! having a 1 in coordi-

nate 1,...,n, respectively. For p € 7"+ such that ged(pi,... ,png1) = 1,
Py, Pk >07 Pk+15--- 3y Pn < 0 and Pn+1 > 07 let
C(p)=pos{e', ... .e" p}. (3.1)

Tt turns out that the dual cone C(p)* of C(p) is “essentially” the knapsack
cone. This result builds the bridge towards the previous section. By definition,
C(p)* can be written as C(p)* = {v € R**' . T2 >0, V& € C(p)}. Since
the generators of ('(p) consist of the unit vectors e',... e plus the vector

p € 7"t we obtain

k n
C(p)* = {1) c TR;O x R - ZW cpp > Z Vi (= Pi) — Vo1 Pn } .

i=1 i=k+41

Depending on the sign of v,41, we partition ('(p)* into the following two cones

k n
{?) ERIE D wipi + vpgiPogr > D Ui (PJ} :

i=1 i=k+41

C(p)>

k n
(7(;0)*S = {1) c TR;O X Ry Zmpi > Z vi - (=pi) + (—Vng1 )Pt } .

i=1 i=k+41

Both cones, C'(p)5 and C(p)%L may be regarded as “>-knapsack cones”, or,
the facet of the cone C'(p)5 (C(p)%) induced by the non-trivial inequality is a
knapsack cone of the f’ormif\’k“’n:k (K n—kt1) that we studied in Section 2.

Tn the remainder of this section we study the minimal Hilbert basis of C'(p).
Tt turns out that this basis is closely related to the problem of simultaneous
diophantine approximation of rational numbers by other rational numbers with
an upper bound on the denominator. More precisely, we consider the following
approximation problem:

Simultaneous Diophantine Approximation “from above”:

]’etp17"'7pn+1 EZ’ Pn41 >0’ (]TI(]NEZ’N>0
Find integers qi, ..., qny1, N > gy > 0 such that q;/qni1 > pi/Pnga, & =
1,...,m, and Yo (22— — B2} 4s as small as possible.

=1 NG n 4 Prn

a1 qn
Gn41 """ Guga

The vector q' = ( ) is called a best approrimation of p' = (-2

P’

P :
R ) from above with respect to N .
Tt is clear that if N > p,4q, then p/ = (22— ... =) itselfl is its best ap-

Pt ? Pt
proximation from above. Tt is, however, not clear how one can characterize a

best approximation of p’ from above when N < p,y1. We show that a best
approximation of p’ from above can be read off from the minimal Hilbert basis

of C(p).

Theorem 3.1. Let p1,... ,pny1 € 7, ppe1 > 0, and N € 7., N > 0. There
exists an element (q1, ..., qne1) of the minimal Hilbert basis of C'(p) such that
¢ = (qq*, ey qur}) 15 a best approrimation of p' = (ﬁ, o ’pp:_1) from

above with respect to N. Moreover, among all such best approximations of p’,

q’ 1s the unique one with smallest denominator g, y1.



Instead of restricting our attention to approximations of a rational vector p’
from above, one could ask for approximations where, for any of the components
of p’, one would specify a-priori, whether the approximation should lie below
or above the corresponding value of p’. Theorem 3.1 can be extended to this
situation.

Theorem 3.2. Let o € {—1,+1}" be the sign pattern associated with one or-

thant of R™. Let p1,... ,pns1 €7, pny1 >0, and N € 7., N > 0. There erists
an element (q1, ..., qny1) of the minimal Hilbert basis of pos {oie', ... o,e™, p}
such that

n . . n /I?, .

Z 4 _Pi =min Z i o P YEY, .. Bnyr €7,

iy [ n4 Pn+1 Pl EL RN Pn+1

N >xpp >0, fﬂ:( U )>0 .
T 41 P41

Among all solutions of this diophantine approximation problem, (qqlr1 S qu )

18 the unique one with smallest denominator.

4 A recursive algorithm for the Hilbert basis of
C(p) and the knapsack cone

We have motivated in the previous sections why the Hilbert basis of the knapsack
cone and the cone of best approximations from above 1s of particular interest. In
this section we treat algorithmic questions related to these bases. We first deal
with the cone C'(p) = pos {e',... ™ p} C R”*' related to the best approxima-
tions from above. Applying a unimodular transformation we may assume that
p=(p1, .. Pagr) € N"TL

We remark that it is trivial to find a Hilbert basis of C'(p), because it is well
known that {e' ... e, plU{z € Z"F 12 =50 Nt + Apip, 0 < N < 1}
actually is a Hilbert basis of C'(p) (cf. [C31]). All we are left with is to enumerate
these integral points. However, in general, the size of this Hilbert basis 1s
exponentially larger than the size of the minimal Hilbert basis, and, of course,
we are interested in computing a “small” one.

We proceed in an inductive fashion to compute the basis of C(p): Tet H,
be the minimal Hilbert basis of the 2-dimensional cone

Cs :==pos{e', (pn,pns1) }.

Tt is clear that ¢! € Ha. Tet (wi,h1) < ... < (Wm,hm) € Ha \ {e'} be the
remaining elementsin Ho. Tt follows that, for every x € C(p)ﬂ%"‘“ with 2,41 >
0, the coordinate x,, 11 has a representation of the form 2,1 = Z:qﬂ oy by With
iy b € N

Definition 4.1. Fori,je{l,... m—1}, i<y, let

b
= {T e C(p)n A Hiveoo o fti EN 0 < @pqq = qu,hq, < h,7'+1} .

y=1

We say that {g',...  g'} C I are generators of a set I, C 7" if, for every x € I,
there erist o1, ... 0y € N such that x = Zj,ﬂ oug.



Noting that h,, = p,41, the following statement i1s immediate.

Lemma 4.2. The union of {e', ... ", p} and a set of generators of 1+~

defines a Hilbert basis of C'(p).
Tn fact, an inclusionwise ordering of all the subsets C*7 is possible.

Lemma 4.3. For every ' < 1 < j < j € {1,...,m— 1}, a minimal set of
generators of CH1 (w.r.t. inclusion) defines a subsel of any set of generators of

lodia

'in order

On account of Lemma 4.2 it suffices to find generators of ¢~
to determine a Hilbert basis of C'(p). A set of generators of C"™~ ! can be

computed in a recursive manner.

Algorithm 4.4. Recursion formula to find the generators of C'7 1.

(1)  Fori=1,...,m— 1 determine generators of C"'.
(2) Fori=m —2,...,1 determine generators of C"™1.

The reason why this recursion makes sense is that the task of finding a set
of generators of C" can be solved with a procedure to determine the Hilbert
basis of a cone similar to ('(p), but in one dimension less. Secondly, if one has,
for i = m —2,...,1 as input a set of generators of C** and C't1"™ =1 then
one can devise a procedure that returns generators of C*™ =1 This is the idea
behind the recursion.

Lemma 4.5. Let p = (p1,... ,pn_1,hibny1) € N and let ', ... """ de-
note the first n — 1 unit vectors of R™. For i € {1,....m — 1}, let H be a
Hilbert basis of the n-dimensional cone C(p) = pos{e',... e" ', p}. The set
{(z1, .. #n 1, 2wi, 2hy) + (%0, 20 1,2) € H' 0 < zh; < hjg1} is a set of
generators of O™

Lemma 4.5 shows that a set of generators of €7 can easily be reconstructed
from a Hilbert basis of the cone (C(p). This is where the inductive step comes
into play. Tn order to solve Step (2) of Algorithm 4.4 one must be able to turn a
set of generators of O and 1™~ into a set of generators of C»™~1. This
task may again be solved with a recursive algorithm that would read as follows.

Algorithm 4.6. (Recursion to find ¢/~ ")

Input: An ordered set {g', ..., ¢'} of generators of C'+1™=1 wyith g;’_H <
... < ghoq; a set of generators of Chr.

Output: A set of generators of CH™~1;

For every v € {1,... t} determine a set of generators of the set (G, =
{ye ™ yop <gnii}-

Lemma 4.7. G = C"" and Gy = OV

Lemma 4.7 shows that when we enter the for-loop of Algorithm 4.6, a set of
generators of O is also a set, of generators of (G1. Then we proceed through all
values of v and determine a set of generators of (5, using a set of generators of
(Gy_1. When v equals £ + 1, we terminate with a set of generators of (7,41 that

corresponds to a set of generators of ¢~



The key of Algorithm 4.6 1s a subroutine for returning a set of generators of
(7,41 whose input consists of a set of generators of (7,,. Tt is not difficult to see
that (7,41 18 equal to the set

S = {zeC™ 1. INE{0,... N}, ye G,y st

4.1
Tpp1 = Aghiq + Yngr < gni L (41)

where A, :=max{A € N: Agy , < q;;'ﬂ} and .q;j_11 := hy,. The generators of

(41 are points of the form

(21, ) €8 ay = [P =1, (4.2)
Pn+1

To each point 2 of the form (4.2) there corresponds a n-dimensional vector of
residua of components @;p, 41 —2np1ps, 2 = 1, ..., n. In fact, one can show that
the minimal set of generators of (7,41 can be characterized as follows: we order
the integral points of the form (4.2) w.r.t. increasing last coordinate; the vector
of residua of a point that appears later in this sequence is incomparable with the
vectors of residua of all points that occur earlier in this sequence. Resorting to
appropriate data structures that contain information about the vector of residua
for every element in (7, one can determine a set of generators of (7,41 without
testing every integral point in S.

For precisely this reason, Algorithm 4.4 yields a much more sophisticated
algorithm for determining the Hilbert basis of (C(p) than the trivial method
discussed at the beginning of the section.

We now illustrate the essential steps of Algorithm 4.4 on an example.

Example. Tet n = 2 and p = (30,29,17). The elements of the Hilbert basis
of C'(p) = pos{e',e? p} that we are interested in consists of integral points of
the form (z1, 22, 73) € N? with 23 < ppy1 = 17 and z; = [%] fori=1,2.
To each such point x there corresponds the 2-dimensional vector of residua
(21p3 — ®3p1, 4ap3 — 23p=2). Table 4 includes this information.

By (w1, h1), ..., (m, hm) we denote all elements in the Hilbert basis of the
2-dimensional subcone Cy := {e', (29, 17)7}, except for e'. In our example we
have that m =4 and (wy, hy) = (2,1) , (w2, ha) = (7,4), (w3, hs) = (12,7) and
(wa, ha) = (29,17).

Following Algorithm 4.4 we execute Step (1) to find generators of the sets
CHYL 0% 033 Lemma 4.5 implies that a generator of O is the element
(2,2,1). Accordingly, we see that a generator of C'*? is the element (8,7, 4) and
that the vectors (13,12,7) and (25, 24, 14) define generators of C*7.

With this information we can start Step (2) of Algorithm 4.4. There we first
determine generators of %3 = {reCn 73 3 po, ps € N with pg > zp40 =
Aps + Tus}. The generators of this set coincide with the union of the generators
of C%2 and C*3. Tt remains to find the generators of 3. To find these, we
inspect the generators of C%? in the following order: first ¢' = (8,7,4), then
g2 = (13,12,7) and finally ¢® = (23,23,13).

For every such element, we determine the maximal natural number A, such
that A, ¢35 < gg“. The corresponding numbers in this case are A\ = Ay = A3 =
1.

For g' = (8,7,4), we determine the minimal natural number u such that
the residuum of the vector ¢' + p(2,2,1) exceeds the value of p3 = 17 in one



T3 vector residuum | x3 vector residuum
1 (2,2,1) (4,5) 2 (4,4,2) (8,10)
3 (6,6,3) (12,15) 4 (8,7,4) (16,3)
5 (9,9,5) (3,8) 6 (11,11,6) (7,13)
7 (13,12,7) (11,1) 8 (15,14,8) (15,6)
9 (16,16,9) (2,11) 10 | (18,18,10) (6,16)
11 (20,19,11) (10,4) 12 1 (22,21,12) (14,9)
13 || (23,23,13) | (1,14) | 14 | (25,24,14) | (5,2)
15 (27,26, 15) (9,7) 16 | (29,28,16) (13,12)
17 || (30,29,17) | (0,0)
Table 4

All vectors that are written in bold together with the unit vectors e',e® define the

minimal Hilbert basis of C(p).

component. This gives u = 1, and the corresponding vector is (9,9,5) that we
add to the generators of 3. For all the other vectors whose 3rd. coordinate
is of the form g4 + 1 < g3, the associated vectors of residua are greater than the
residuum of the point (9,9,5).

Next we proceed to ¢2. We know from the previous iteration the generators
of Gy :={y € C"3: y3 < g5 = 7}. This was the set {(2,2,1),(8,7,4),(9,9,5)}.
On account of (4.1), G is of the form Gz = {z € C"?*: IX € {0,... Ay =1}
and y € GG such that x3 = Ag2 4+ y3 < g3 }. Tn order to find generators of Gz we
have to examine the vector of residua of the points x € (73. There are precisely
two additional vectors for which the vector of residua is incomparable with every
vector of residua of the generators of Gao: (16,16,9) and (20,19, 11). A set of
generators of (73 18

{(2,2,1),(8,7,4),(9,9,5), (13,12,7), (16,16,9), (20,19, 11)}.

Next we proceed to ¢g?. Becanse Az = 1 we need to find the set of all points
r€Gy={recC"¥: 3Xe{0,1}and y € Gasuch that 23 = Agi+ysz < 17} and
the vector of residua is incomparable with every vector of residua associated with
the generators of (3. This yields the vector (25,24, 14). On account of lemma
4.7, the sets % and (G4 coincide. The generating set of ('1»3 consists of the
following vectors: (2,2,1), (8,7,4), (9,9,5), (13,12,7), (16,16,9), (20,19,11),
(23,23,13), (25,24,14). These vectors plus the vectors e', e? and p define a
Hilbert basis of C'(p) in this example.

We want to remark that when p € N”*' then ((p)* partitions into the two
cones RZE! and a >-knapsack cone of the form (cf. Section 2)

C(p)*z = {T € Rg_i(;1 : ZP7T7 2 pn,+1mn+1} -

i=1

There is a similar recursive way of computing a “small” Hilbert basis of C'(p)%.
Let Hs be the minimal Hilbert, basis of the 2-dimensional cone C5 := {(y, z) €



RZ,: ppy > payrz}. Then ¢! € H. Let (hy,un) < ... < (hym,wm) be all the
elements of H \ {e'} ordered in this way. Fori € {1, ... m — 1} we introduce
a parameter A; to denote the maximal natural number such that \;h; < by
Then we know that for every x € C(p)iﬂ%"'“ with 2, # 0, 2, can be written as
T = Yooy fy by, with gy € IN. We define, for every i € {1,...,m—1},
the set O := {r e C(p)*zﬂZ"‘H S higr >, = Ahi+yn >0, y € U;;z C7, Ne
{0,..., A }}. Realizing that a Hilbert, basis of C'(p)% consists of the union of
the element hy,e” — w,,e”t!. the set {61,... ,e""’”lj and a generating set of
C™= 1 the following recursive procedure to determine the Hilbert basis of C'(p)3,
becomes obvious. N

Algorithm 4.8. Fori=1,... ,m—1 determine a set of generators of C".

Finally, we remark that a similar recursion can be formulated to determine
the Hilbert basis of a knapsack cone K, ,,, see Section 2.
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